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Outline

1. Overall approach: from scientific abstracts to gene interaction
database

2. A knowledge-based extraction method

3. Building classes for semantic tagging

4. Learning extraction rules

5. Towards a conceptual representation of texts
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An Information Extraction problem

Functional Genomics: gene interaction discovery

- Experimental approaches (sequencing, functional analysis)
- Information Extraction in Genomics literature

Examples of bibliography databases

MedLine FlyBase

DB Size > 16 millions of refs. > 9500 genes recorded

Abstract length 10 sentences 2 - 3 sentences
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Example: a MedLine abstract

AB  - GerE is a transcription factor produced in the mother cell compartment of
sporulating Bacillus subtilis. It is a critical regulator of cot genes encoding
proteins that form the spore coat late in development. Most cot genes, and the
gerE gene, are transcribed by sigmaK RNA polymerase. Previously, it was shown
that the GerE protein inhibits transcription in vitro of the sigK gene encoding
sigmaK. Here, we show that GerE binds near the sigK transcriptional start site,
to act as a repressor. A sigK-lacZ fusion containing the GerE-binding site in
the promoter region was expressed at a 2-fold lower level during sporulation of
wild-type cells than gerE mutant cells. Likewise, the level of SigK protein (i.
e. pro-sigmaK and sigmaK) was lower in sporulating wild-type cells than in a
gerE mutant. These results demonstrate that sigmaK-dependent transcription of
gerE initiates a negative feedback loop in which GerE acts as a repressor to
limit production of sigmaK. In addition, GerE directly represses transcription
of particular cot genes. We show that GerE binds to two sites that span the -35
region of the cotD promoter. A low level of GerE activated transcription of cotD
by sigmaK RNA polymerase in vitro, but a higher level of GerE repressed cotD
transcription. The upstream GerE-binding site was required for activation but
not for repression. These results suggest that a rising level of GerE in
sporulating cells may first activate cotD transcription from the upstream site
then repress transcription as the downstream site becomes occupied. Negative
regulation by GerE, in addition to its positive effects on transcription,
presumably ensures [..]
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Example of information extracted from a text fragment

Fragment from a Medline abstract

the GerE protein inhibits transcription in vitro of the sigK gene encoding
sigmaK

Filled form

Type : negative
Agent : GerE protein

Interaction

Target: Expression Source : gene sigK

Product : protein
sigmaK
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Information Extraction in Genomics

Information

Keyword query

Potentially relevant
abstracts

NL query / template

Information
Retrieval

Extraction

DataBase in Biology
(MedLine, FlyBase )

Fragment Selection

Potentially relevant fragments
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Overall approach

As information is scattered (around 3 % of the abstract sentences are
relevant for the discovery of gene interactions), a full text analysis is too
costly

A two step approach: “selection first, then extraction”

• Relevant fragment selection

A fast and robust processing based on surface clues and key words

• Knowledge extraction

Apply extraction rules on “normalized” texts
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Limitations of keywords based approaches (1)

Identifying the presence of interaction between 2 genes using word weights

• 80 % Recall and precision for sentences including 2 gene names

• Few information is extracted (classification based approach)

Recall(Classi ) =
Ex ∈Classi and classified in Classi

Ex ∈Classe i

Precision(Classi ) =
Ex ∈Classi  and classified in Classi

Ex classifed in Classei
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Limitations of keywords based approaches (2)

Identifying interaction triples (gene name/protein, interaction verb, gene name/protein)

more information, but low precision

GerE stimulates cotD transcription and y cotA transcription […], and,
unexpectedly, inhibits […] transcription of the gene (sigK) […]

Constraint on the number of words between the elements of the triple
Distance ≤ 5 words: good precision but low recall
Distance > 5 words: lower precision
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Combining different level of textual analysis

For a good precision and a large recall, extraction rules should include
conditions on different textual analysis levels

1. Sentence processing
Parsing and semantic tagging lead to an enriched and normalized text

representation

 

[ cspAp  ] [ direct
s  

] [the   expression  of  the  cspA gene  ] 

Direct object  Subject  
NprepN  

Protein  Production  
Gene  Positive_  

interaction  

Fragmen  t 

Semantic categories  

Noun  Verb  Det  Noun  Prep  Det  Noun  Noun  

Syntactic categories  GP  NP  

Syntactic relations  

2. Application of extraction rules (automata) on the resulting interpretation
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Automata examples: protein identification

The automata use the syntactic and semantic information from the parsing
phase to recognize interactions

Semantic Class :
Protein

<Gene_
expression>

PROTEIN

expression of Semantic Class :
Gene

NP($3,$4)
NprepN($1,$2)

(
1

)
1

(
2

(
3

[Prep ]
)
3

(
4

)
2

GENE EXPRESSION

)
4
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Automaton example: interaction identification and mark
up

<Protein>

</gene_
expression><protein> </protein>

<interaction> </interaction>

<gene_
expression>

Semantic Class :
Positive interaction

[NP
( )

1 1
[Verb

(
2

)
2

[NP
(

3
)
3]

POSITIVE INTERACTION
Subject($2,$1)

Dobj($2,$3)
<Gene

expression>
] ]
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Syntactic and semantic knowledge needed

 

[ cspAp  ] [ direct
s  

] [the   expression  of  the  cspA gene  ] 

Direct object  Subject  
NprepN  

Protein  Production  
Gene  Positive_  

interaction  

Fragmen  t 

Semantic categories  

Noun  Verb  Det  Noun  Prep  Det  Noun  Noun  

Syntactic categories  GP  NP  

Syntactic relations  

Types of knowledge needed How to get it

Syntactic categories (parts of speech)

Syntactic relations (dependencies)

Tools exist:
• morphosyntactic taggers
• syntactic parsers (SP XRCE)

Semantic categories (conceptual hierarchies)

Extraction rules
Predicate schemata

Knowledge can be learned from
the corpus
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Architecture of Caderige

Document collection
(Medline, Flybase, etc.)

Query / Extraction template

Domain knowledge
Lexicon, Thesauri

Extraction rules

 answer to the query
 / fil led template

Syntactic
parsing

Semantic
analysis

Extraction Storage

Machine
Learning

Relevant frag-
ment selection

Semantic
labeling

Conceptual
representation

Taggi ng

Syntactic
parsing

Pattern
matchi ng
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Knowledge learning and exploitation
(Information Extraction task)

Application

Corpus

Knowledge

Queries

Learning step Exploitation step

Extraction
Machine
Learning

Document library

Knowledge
Base
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Learning conceptual hierarchies for semantic tagging

Cell_cycle

Growth i s_ a

Devt

Sporulation
Differen
ciation

i s_ a
is_ a

is_ a

Hemoglobin

Enzym

i s_ a

is_ a

i s_ a is _a

is _ ais _ a

is _a

is_ a

Protein
DNA sequence

PromoterGene

1.28bicD

Dfd

Hierarchies of semantic classes can be learned if the following conditions
are sastified:

• from an homogeneous corpus, written in a specialized language
• using a robust parser
• with the help of an expert (or user)
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Classical approaches to word classes building

Harris’ assumption of distributional semantics

The semantics is reflected by the syntax in specific domain corpora

Some semantics can be learned by observing syntactic regularities

• The classes are based on the semantic proximity between words

• The similarity measure of two words is based on the number of their
common contexts of in the training corpus

• Traditional context definitions

Word co-occurrences within a window, or in a document.
Co-occurrences of words relation of syntactic dependancy
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Similarity based on the syntactic context

• Parsing gives syntactic relations between the predicates (verb/noun) and
their arguments

• Syntactic dependencies are represented as triplets (predicate, relation,
argument)

• These triplets are the learning examples
 

[ cspAp ] [ directs  ] [the   expression  of  the  cspA gene  ] 

Direct object  Subject  NprepN  

NN  

Expression NprepN (of) N

 [Expression] [of spoIIIG].
     

 [Expression] [of ykuD].
      

Transcription NprépN (of) N

[Transcription] [SpoIIIG].

 [Transcription] [comG].
      

 [Transcription] [ydhD].
           

Example of concept formation using ASIUM
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Classes of words co-occurring in different syntactic contexts form a concept

Heavy Cream

Whipped Cream Whipped Cream

Heavy

Sour Cream Plain Cream

Spread Serve

Cream

Basic
classes

with
(adjunct)

Direct
object

with
(adjunct)

Spread Serve

Heavy Cream

Whipped Cream

Heavy Cream

Sour  Cream

Plain Cream

Dir ect
object

Builds words classes along with their selectional restrictions
(predicates or arguments which the words can occur with)
Generalizes the syntactic dependencies observed in the corpus
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From word classes to term classes

Limitations of word classes

• The terms (domain relevant semantic units) are often multi-word
expressions

• Single word expressions are often polysemous and difficult to interpret

• Working with complex terms reduces syntactic ambiguity and therefore
increases
distributional evidence

Problem for building term classes

• How to identify terms which result from domain expert agreement?

• How to process terms of heterogeneous size (up to 5 or 6 words) in a
distributional analysis?
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Building term classes

Term extraction using ACABIT [Daille 95]

• List of potential terms and variants
acid synthase deficient

stationary phase phenomena
new tangible evidence

fatty acid ↔ fatty acids
chromosomal map
several genes

further distinctive conformational change
unsaturated acid ↔ unsaturated fatty acid

stable RNA
alpha-oxo acid

map of Piggot and Hoch
set of single-gene replacement

• Relevance sorting criteria (logLike)

Term filtering using

• Stop lists to filter out noise (futher, several, set of …)

• Existing keyword lists and glossaries (SwissProt, JouyINRA…) to choose a
relevance threshold

Redefinition of ASIUM distributional analysis to take complex terms into account

Class building experimentations and parameter tuning using Mo’K
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Methods for the design of extraction rules

Manual design

Time consuming and difficult to tune the precision/recall balance

Semantic class learning and rule manual design

30% time gained with the help of semantic class learning [Faure &
Poibeau, 2000].

Next step

Learning extraction rules from annotated and semantically tagged texts
[Riloff, 93], [Freitag, 98], [Soderland, 99].
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Extraction rule learning from a training corpus

Building a training corpus with interaction markup

Enriching and normalizing the training corpus

• Syntactic tagging and parsing

• Term identification

• Semantic tagging

Learning extraction rules from the training corpus, parsed and tagged

Normalization increases phrasing homogeneity and makes it easier to learn
extraction rules
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Building a training corpus

1. Fragment selection

2. Definition of annotation guidelines

3. Biologists must mark up relevant information in the training corpus

The GerE protein inhibits transcription of the sigK gene encoding
sigmaK

The <agent type=protein>GerE protein</agent> <interaction

type=positive>inhibits </interaction><target

type=transcription>transcription of the <source type=gene>sigK

gene</source> encoding <product>sigmaK</product></target>

Training corpus of annotated examples
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Extraction rule learning

Active domain research from the beginning of the nineties (MUC conferences)

• Learning extraction rules from free and semi-structured texts
AutoSlog [Riloff, 93-99]

LIEP [Huffmann, 96]

SRV [Freitag, 98]

Crystal [Soderland, 95], Whisk [Soderland, 99]

WAWE [Aseltine, 99]

Pinocchio [Ciravegna, 00]

ILP RHB+ [Sasaki & Matsuo, 00]

• Learning methods
Relational methods (ILP), bottom-up and top-down (FOIL-like)
Grammatical inference (Alergia)
Attribute-value methods (C4.5, Naïve Bayes) and propositional
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One further step towards semantic normalization

Various expressions …
The expression of spoIIID

spoIIID expression

The spoIIID gene product

The production of SpoIIID

SpoIIID production

SpoIID

the expression of sigK.

sigK expression.

the sigK gene product

the production of sigma K.

sigma K production.

stimulates

for one interpretation

Agent

Expression

Product

Source sigK

sigma K

Target

Positive

interaction
Expression

Source

ProductSpoIIID

spoIIID
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Additional knowledge: Predicate schemata

Predicate schemata = predicate classes and their arguments related by semantic
and syntactic dependencies

Agent

Target

Activation
Activate

Expression

Protein

Pred : Positive
Interaction

Stimulate
Stimulation
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From restrictions of selection to conceptual structures

• Selectional restrictions are learned along with the semantic classes.

• Learning subcategorization frames
Organizing and specializing the lists of selection restrictions with respect to
the meaning and usage (to perform an operation / to perform in a play)

• Learning sets of predicates
which are morphologic
derivations with their
corresponding arguments

Repress

Repression

Gene

Protein
Pred: Repress

• Learning semantic sets of
predicates with their
corresponding arguments Pred: Repress

Pred: Inhibit

Gene

Protein
Pred: Negative Interaction
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Learning predicate-argument structures

Repress

Repression

Gene

Protein

Protein

Gene Repress

Repression

Gene

Protein
Pred: Repress

Morphological derivation

Semantic similarity

Syntactic derivation
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Learning conceptual structures

Inhibition

Gene

Repress

Repression

Gene

Protein
Pred: Repress

inhibit

Protein
Pred: Inhibit

Semantic similarity

Syntactic derivation

Pred: Repress

Pred: Inhibit

Gene

Protein
Pred: Negative Interaction
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More conceptual interpretation

"The sigma factor controls the expression of gene dacB "

• At the syntactic level

Verb : control
Subject : Sigma factor
DObj : expression of gene dacB

Noun : Expression
Noun Modifier (of) : dacB gene

• At the predicate level

Action = Control (= to control, verb)
Agent = Protein (= sigma factor, subject)
Object = Protein production (= expression of gene dacB, DObj)

Action = Express (= expression, Noun)
Agent = Gene (= gene dacB, Noun Mod)



32

And the resulting interpretation

Control Agent Sigma Factor : ?

Expression

Product

Agent Gene:
dacB

Protein

Target

Open problems

- Co-reference resolution, negation
- Exploit the biological models (cascades, sequences, cycle, etc.)
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Conclusion

Information Extraction requires tools and linguistic/conceptual knowledge for building more abstract
and conceptual representations of the text

• Robust tools are available: morphosyntactic taggers, syntactic parsers, term extractors…

• Linguistic and conceptual knowledge can be automatically learned:

Today: semantic classes, selectional restrictions

Tomorrow: term classes, predicate schemata …

Building such resources call for multidisciplinary research and concern many
other tasks than IE: Information Retrieval, Translation, Lexicography, Writing
Assistance…

Biology
Learning Natural Language

Processing
Knowledge
Ingeneering
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Subcategorization frames (SCF) learning

• From conceptual hierarchies, restrictions of selection and parsed corpus

Adj (to)
Chantilly

Dobj

Adj (until) Stiff

Cream

Whites
Whip Emulsible

Whip EmulsibleDobj

Whip

Stiff
Adj (until)

Chantilly
Adj (to)

Whip

• Learning structural constraints: optionality, mutual exclusion, etc.

 Syntactic desambiguation of the attachments

• Learning conceptual dependencies between complements (restrictions of
selection are overgeneral).

 Semantic desambiguation:  efficiency in IR (  expansion of the queries)

 Required for learning predicate argument structures
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The approach to learning SCF: ILP plus DL

• Hybrid method: combining Description Logic and Inductive Logic Programming
for a good expressivity and a low complexity.

"Whip" has at least one direct object. They are all either Cream, or Whites.

Schemata1(X) :- Whip(X), ≥ 1 DObj(X), ∀ DObj.Cream(X).
Schemata2(X) :- Whip(X), ≥ 1 DObj(X), ∀ DObj.Whites(X).

If "Whip" has a complement starting with "until", its head is of "stiff" type and
there is no complement starting with "to".

Schemata3(X) :- Whip(X), [≥ 1 until(X) ], ∀ until.stiff(X), ≤0 to(X).

Schemata4(X) :- Whip(X), [≥ 1 to(X)], ∀ to.Chantilly(X), ≤0 until(X).

• A complementary approach: Grammatical Inference.
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Fragment

Activation of gene 1.28 by Dfd

[…]

[<by> Dfd][activation] [<of> gene 1.28]

NprepN

NprepN

Gene Protein

DNA Sequence

Question

Which protein does activate gene

1.28?

[Which protein] [does activate] [gene 1.28]

DobjSubject

GeneProtein

DNA Sequence

One step beyond: conceptual representation
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Fragment

Activation of gene

1.28 by Dfd […]

Activate

Agent Target

Dfd 1.28

Question

Which protein does

activate gene 1.28?

Protein

Activate

Agent Target

1.28

Projection

Activate

Agent Target

1.28 / 1.28Protein /Dfd
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The conceptual structures required

Activation of gene 1.28 by Dfd […]

Which protein does activate gene 1.28?

Activate

Agent Target

1.28 / 1.28Protein /Dfd

• Additional conceptual knowledge is needed to interpret the sentences.

Agent

Target

Activation
Activate

Gene

Protein

Pred: Positive
Interaction

pro t e in

gene

hemoglob in

bicD 1 .28

enzy m

is_a

is_a

is_a is_a

DNA sequence

prom ot er

is_ais_a

Df d

is_a

is_a
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Item to classify: Predicates or Modifiers

• A dual point of view of the examples

Objects: predicate; Attributes: modifier

 

Objects: modifier; Attributes: predicate

Structural constraints on SCFs
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[Dry]
Dobj <food> required
[(Adj mean) by <air> XOR with <tambour>] optional
[(Adj duration) during <duration> XOR for  <duration>]
optionnel
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Medline experiment in a keyword based representation

• Total number of "biterms" sentences: 313 classed by biologists.

• 104 / 313 = 33,3 % with interaction
• 209 / 313 = 66,7 % without interaction

Recall rate: 74 %
Precision rate: 51,7 %

Half of the sentences classed positively are negative.
1/ 3 of the interactions are recognized.

Recall is OK but precision is very poor.
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 Example of MedLine abstract

Other Formats:  [Citation Format]
Links:  [98 medline neighbors]   [Journal of Bacteriology]

UI  - 98348468
AU  - Qi Y
AU  - Hulett FM
TI  - Role of PhoP approximately P in transcriptional regulation of genes
      involved in cell wall anionic polymer biosynthesis in bacillus subtilis
      [In Process Citation]
LA  - Eng
DA  - 19980801
DP  - 1998 Aug
IS  - 0021-9193
TA  - J Bacteriol
PG  - 4007-10
SB  - M
CY  - UNITED STATES
IP  - 15
VI  - 180
JC  - HH3
AA  - AUTHOR
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Example of MedLine abstract

AB  - tagA, tagD, and tuaA operons are responsible for the synthesis of cell
wall anionic polymer, teichoic acid, and teichuronic acid, respectively, in
Bacillus subtilis. Under phosphate starvation conditions, teichuronic acid is
synthesized while teichoic acid synthesis is inhibited. Expression of these
genes is controlled by PhoP-PhoR, a two-component system. It has been
proposed that PhoP approximately P plays a key role in the activation of tuaA
and the repression of tagA and tagD. In this study, we demonstrated the role
of PhoP approximately P in the switch process from teichoic acid synthesis to
teichuronic acid synthesis, by using an in vitro transcription system. The
results indicate that PhoP approximately P is sufficient to repress the
transcription of the tagA and tagD promoters and also to activate the
transcription of the tuaA promoter.

AD  - Laboratory for Molecular Biology, University of Illinois at Chicago,
      Chicago, Illinois 60607, USA.
RO  - O:099
PMID- 0009683503
SO  - J Bacteriol 1998 Aug;180(15):4007-10

----------------------------------------------

Parsing
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SUBJ(8@P 9@play)
SUBJPASS(1@it 4@propose)
DOBJ(9@play 12@role)
VMODOBJ(9@play 21@of 24@tagD)
VMODOBJ(9@play 16@of 20@repression)
VMODOBJ(9@play 13@in 15@activation)
ADJ(22@tagA 24@tagD)
ADJ(17@tuaA 20@repression)
   _It has been proposed  that PhoP approximately 8@P plays a key role in the
activation of tuaA and the repression of tagA and 24@tagD .
  [SC  [NP _It NP]/SUBJ :v has been proposed SC]  [SC that [AP PhoP AP]
approximately [NP 8@P NP]/SUBJ :v plays SC] [NP a key role NP]/OBJ [PP in the
activation PP] [PP of tuaA and the repression PP] [PP of tagA and 24@tagD PP] .
NN(11@key 12@role)
NNPREP(20@repression 21@of 24@tagD)
NNPREP(15@activation 16@of 20@repression)
NNPREP(12@role 13@in 15@activation)
NUNSURE([N [NP a key role NP] [PP in the activation PP] [PP of tuaA and the
repression PP] [PP of tagA and tagD PP] N])
NUNSURE([N [NP P NP] N])

mailto:8@P
mailto:24@tagD
mailto:8@P
mailto:24@tagD
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Learning examples

activation $ of (Nom-Prep-Nom) $ P. $ 1
activation $ of (Nom-Prep-Nom) $ repression $ 1
activation $ of (Nom-Prep-Nom) $ promoter $ 19
activation $ of (Nom-Prep-Nom) $ some $ 1
activation $ of (Nom-Prep-Nom) $ expression $ 8
activation $ of (Nom-Prep-Nom) $ Spo0A $ 1

activation $ of (Nom-Prep-Nom) $ tuaA $ 1
repression $ of (Nom-Prep-Nom) $ tagA $ 1
activation $ of (Nom-Prep-Nom) $ PA3 $ 1
activation $ of (Nom-Prep-Nom) $ phoA $ 1
activation $ of (Nom-Prep-Nom) $ lichenysin $ 1
activation $ of (Nom-Prep-Nom) $ transcription $ 9
activation $ of (Nom-Prep-Nom) $ phoB $ 1
activation $ of (Nom-Prep-Nom) $ pro-sigmaE $ 1
activation $ of (Nom-Prep-Nom) $ RocR $ 1
activation $ of (Nom-Prep-Nom) $ sigma $ 14
activation $ of (Nom-Prep-Nom) $ PrfA $ 1
activation $ of (Nom-Prep-Nom) $ set $ 1
activation $ of (Nom-Prep-Nom) $ regulator $ 1
activation $ of (Nom-Prep-Nom) $ narGHJI $ 1
activation $ of (Nom-Prep-Nom) $ enzyme $ 1
activation $ of (Nom-Prep-Nom) $ FNR $ 1
activation $ of (Nom-Prep-Nom) $ gltC $ 1
activation $ of (Nom-Prep-Nom) $ autoregulation $ 1
activation $ of (Nom-Prep-Nom) $ gene $ 4

activate $ COD $ transcription
$ 5
activate $ COD $ e. $ 1
activate $ COD $ promoter $ 5
activate $ COD $ b $ 1
activate $ COD $ expression $ 6
activate $ COD $ catabolism $ 1
activate $ COD $ sequence $ 1
activate $ COD $ phosphorelay $
2
activate $ COD $ operons $ 1
activate $ COD $ function $ 1
activate $ COD $ 29 $ 1
activate $ COD $ PA3 $ 1
activate $ COD $ gene $ 3
activate $ COD $ map $ 1
activate $ COD $ 86 $ 1


