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1.Overall approach: from scientific abstracts to gene interaction
database

2.A knowledge-based extraction method
3.Building classes for semantic tagging
4.Learning extraction rules

5. Towards a conceptual representation of texts




An I nformation Extraction problem

Functional Genomics. gene interaction discovery

- Experimental approaches (sequencing, functional analysis)
- Information Extraction in Genomics literature

Examples of bibliography databases

MedLine FlyBase

DB Size > 16 millions of refs. > 9500 genes recorded

Abstract length 10 sentences 2 - 3 sentences




Example: a M edL ine abstract

AB - GerEis a transcription factor produced in the nother cell conpartnent of
sporul ating Bacillus subtilis. It is a critical regulator of cot genes encoding
proteins that formthe spore coat late in devel opnent. Mdst cot genes, and the
gerE gene, are transcribed by sigmK RNA pol ynerase. Previously, it was shown
that the GerE protein inhibits transcription in vitro of the sigK gene encodi ng
sigmaK. Here, we show that GerE binds near the sigK transcriptional start site,
to act as a repressor. A sigK-lacZ fusion containing the GerE-binding site in
the pronoter region was expressed at a 2-fold |lower |evel during sporulation of
w I d-type cells than gerE nutant cells. Likew se, the level of SigK protein (i.
e. pro-signmaK and sigmaK) was | ower in sporulating wild-type cells than in a
gerE nmutant. These results denonstrate that signmaK-dependent transcription of
gerE initiates a negative feedback loop in which GerE acts as a repressor to
limt production of signmaK. |In addition, GerE directly represses transcription
of particular cot genes. W show that GerE binds to two sites that span the -35
region of the cotD pronoter. A low |level of GerE activated transcription of cotD
by si gmaK RNA pol ynerase in vitro, but a higher |evel of GerE repressed cotD
transcription. The upstream GerE-binding site was required for activation but
not for repression. These results suggest that a rising level of GerE in
sporulating cells may first activate cotD transcription fromthe upstreamsite
then repress transcription as the downstream site becones occupi ed. Negative

regul ation by GerE, in addition to its positive effects on transcription,
nr e<itimabl v en<iirecs [ 1




Example of information extracted from a text fragment

Fragment from a M edline abstr act
the GerE protein inhibits transcription in vitro of the sigk gene encoding
sigmaK

Filled form

| nteraction Type: negative
Agent : GerE protein

Target: EXpression Sour ce : genesigKk

Product : protein
sigmaK




| nformation Extraction in Genomics

Keyword query

Information
DataBase in Biology Retrieval
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(MedLine, FlyBase )
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Over all approach

As information is scattered (around 3 % of the abstract sentences are
relevant for the discovery of gene interactions), a full text analysis is too
costly

A two step approach: “selection first, then extraction”

 Relevant fragment sel ection
A fast and robust processing based on surface clues and key words

 Knowledge extraction
Apply extraction rules on “normalized” texts




L imitations of keywor ds based approaches (1)

| dentifying the presence of interaction between 2 genes using word weights

80 % Recall and precision for sentences including 2 gene names

 Few information is extracted (classification based approach)

|Ex OClass and classified in Class)|
Recall(Class ) =
|Ex OClasse|

_|Ex OClass and classified in Class|
B [Ex classifed in Classe]

Precision(Class)




Limitations of keywor ds based appr oaches (2)

| dentifying interaction triples (gene name/protein, interaction verly, gene name/protein)

more information, but low precision

GerE dimulates cotD transcription and y cotA transcription|[...], and,
unexpectedly, inhibits|...] transcription of the gene (sigK) [...]

Constraint on the number of words between the elements of the triple
»ODistance < 5 words. good precision but low recall
»ODistance > 5 words: lower precision




Combining different level of textual analysis

For a good precision and a large recall, extraction rules should include
conditions on different textual analysis levels

1.Sentence processing

Parsing and semantic tagging lead to an enriched and normalized text

representation

Semantic categories

I
v
1 1

Fragment

Syntactic categories

Syntactic relations

Protein FEsiE. Production 0=
\ interaction /
\
[cpAp ] [direct ] [the expression of the cspA gene |
Noun Verb Det Noun Prep Det Noun Noun
| ‘ Tﬁ NP

_ NprepN
Subject Direct object
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Automata examples: proten identification

The automata use the syntactic and semantic information from the parsing
phase to recognize interactions

‘GENE EXPRESSION '

4{>—€ expression

( PROTEIN ’

Semantic Class :

K Protein
<Gene_

expression>

)—@

TN

Semantic Class : N\
Gene v @
NP($3,$4)

NprepN($1,$2)




Automaton example: interaction identification and mark
up

CPosmvuz INTERACTIOD .
Subject($2,$1)

Dobj($2,$3)

<interaction> </interaction>

Semantic Class : <Gene

<Protein> riattt _ _
Positive interaction expression>

[NP S [Verb S 1 <gene [NP 3 4 1 </gene_
<protein> </protein> 2 expression> expression>




Syntactic and semantic knowledge needed

Y
I |

Semantic categories S Positive Production \ Gene
\ interaction I |
|
Fragment [cpAp ] [direct ]  [the expression of the cspA gene |
Noun Verb Det Noun Prep Det Noun Noun
Syntactic categories | | j? NP
. | | | NprepN
Syntactic relations Subject Direct object
Types of knowledge needed How to get it

Syntactic categories (parts of speech) |Tools exist:
 morphosyntactic taggers

Syntactic relations (dependencies) _
» syntactic parsers (SP XRCE)

Semantic categories (conceptual hierarchies) [ Knowledge can be learned from
Extraction rules the corpus
Predicate schemata




Architecture of Caderige

Syntactic
parsing

Semantic
analysis

Extraction

Relevant frag-
ment selection

J

|
Syntactic
parsing
Semantic
labeling

_____ I

. Conceptual !
' representation

Document collectﬁ

‘ (Medline, Flybase, etc.) |

Domain knowledge \

Lexicon, Thesauri
Extraction rules

Query / Extraction template

Pattern
matching J

/

answer to the query
/ filled template

> Storage ||
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Knowledge lear ning and exploitation

(Information Extraction task)

Learning step Exploitation step

Queries
I
== Application
——
Corpus Machine Extraction [
— _.—— Learning
Knowledge
/
Document library




L ear ning conceptual hierar chies for semantic tagging

/
Cell cycle / ‘\/"
v * / DNA sequence
= Protein /\
Growth '/*°
's_a is_a f\\'sa 5_a Is_a
Sporulation A N / \
leferen / el Gene | Promoter
Devt ciation 1 \ yadal
Is_a is_a

Enzym Dfd —\

Hemoglobin bicD 1.28

Hierarchies of semantic classes can be learned if the following conditions
are sastified:
 from an homogeneous corpus, written in a specialized language
 using arobust parser

bl 20 — e 1 e . . i A e Lt DN




Classical approachesto word classes building

Harris assumption of distributional semantics

The semantics is reflected by the syntax in specific domain corpora
Some semantics can be lear ned by observing syntactic regularities

 The classes are based on the semantic proximity between words

« The similarity measure of two words is based on the number of their
common contexts of in the training corpus

e Traditional context definitions

»Word co-occurrences within awindow, or in a document.
» Co-occurrences of words relation of syntactic dependancy




Similarity based on the syntactic context

 Parsing gives syntactic relations between the predicates (verb/noun) and
their arguments

« Syntactic dependencies are represented as triplets (predicate, relation,
argument)

« These triplets are the lear ning examples
NN

[ 1
[CS|0:|°~IO ] [directr ] [the expr%si(Tn [of the cspA glene 1
Subiect Direct object NprepN
NprepN (of) N NprépN (of) N
[ ] [of spolllG]. [ 1 [SpolllG].
| | ‘
[ ] [comG].
[ ] [of ykuD]. |
| [ ] [ydhD].
|




Classes of words co-occurring in different syntactic contexts form a concept

Heavy Cream

Direct . with
Spread - Serve
. object Ll (adjunct)
A Plain Cream
Sour Cream
Heavy Cream Heavy Cream
Direct : ] with
---------- Whipped Cream || Whipped Cream f . == _ _ Serve
Spread S pp (adjunct)

Sour Cream Plain Cream

Basic
classes

» Builds words classes along with their selectional restrictions
(predicates or arguments which the words can occur with)

» Generalizes the syntactic dependencies observed in the corpus



From word classesto ter m classes

Limitations of word classes

 The terms (doman relevant semantic units) are often multi-word
expressions

» Single word expressions are often polysemous and difficult to interpret

 Working with complex terms reduces syntactic ambiguity and therefore
INCreases
distributional evidence

Problem for building term classes

« How to identify terms which result from domain expert agreement?

 How to process terms of heterogeneous size (up to 5 or 6 words) Iin a
distributional analysis?




Building term classes

Term extraction using ACABI T [Daille 95]

 List of potential terms and variants

aci d synthase deficient further distinctive conformational change
stationary phase phenonena unsaturated acid o unsaturated fatty acid
new t angi bl e evi dence stabl e RNA
fatty acid - fatty acids al pha- oxo acid
chronosomal map map of Piggot and Hoch
several genes set of single-gene replacenent

 Relevance sorting criteria (logLike)

Term filtering using
o Stop liststo filter out noise (futher, several, set—ef .)

 Existing keyword lists and glossaries (SwissProt, JouylINRA...) to choose a
relevance threshold

Redefinition of ASIUM distributional analysis to take complex terms into account

Clace hiildina exneri mentatione and naramater trinina 11sna Mo’ K




M ethods for the design of extraction rules

Manual design

Time consuming and difficult to tune the precision/recall balance

Semantic class learning and rule manual design

30% time gained with the help of semantic class learning [Faure &
Poibeau, 2000].

Next step

Learning extraction rules from annotated and semantically tagged texts
[Riloff, 93], [Freitag, 98], [ Soderland, 99].




Extraction rulelearning from a training cor pus

Building a training corpus with interaction markup

Enriching and normalizing the training corpus
» Syntactic tagging and parsing
« Term identification

* Semantic tagging

L earning extraction rules from the training corpus, parsed and tagged

Normalization increases phrasing homogeneity and makes it easier to learn
extraction rules




Building a training cor pus

1. Fragment selection
2. Definition of annotation guidelines

3. Biologists must mark up relevant information in the training corpus

The GerE protein inhibits transcription of the sigK gene encoding
sigmaK

The <agent type=protei n>GerE protein</agent> <interaction
type=positive>i nhibits </interaction><target
type=transcription>transcription of the <source type=gene>si gK
gene</ source> encodi ng <product >si gnaK</ pr oduct ></t ar get >

» Training corpus of annotated examples




Extraction rule learning

Active domain research from the beginning of the nineties (MUC conferences)

» Learning extraction rules from free and semi-structured texts
AutoSlog [Riloff, 93-99]
LIEP [Huffmann, 96]
SRV [Freitag, 98]
Crystal [Soderland, 95], Whisk [Soderland, 99]
WAWE [Aseltine, 99]
Pinocchio [Ciravegna, 00]
ILP RHB+ [Sasaki & Matsuo, 00]

 Learning methods
Relational methods (1L P), bottom-up and top-down (FOIL-like)
Grammatical inference (Alergia)
Attribute-value methods (C4.5, Naive Bayes) and propositional




One further step towar ds semantic nor malization

Various expressions...

The expression of spolllD

spolllD expression the expression of sigK.

The spolllD gene product sigK expression.

. stimulates the sigK gene product
The production of SpolllD

the production of sigma K.
SpollD

sigma K production.
SpollID production

for oneinter pretation

Positive :
: . —»Agent —» SpollID <«——— Product «—— EXxpression
interaction

| v

Target spol 11D - Source

Y

Expresson——— Source———» sigK

/

Product ——» sigmaK




Additional knowledge: Predicate schemata

Predicate schemata = predicate classes and their arguments related by semantic
and syntactic dependencies




From restrictions of selection to conceptual structures

« Selectional restrictions are learned along with the semantic classes.

 Learning subcategorization frames
Organizing and specializing the lists of selection restrictions with respect to
the meaning and usage (to perform an operation/to performin a play)

s Learning sets of predicates
which are mor phologic o
derivations with their e
corresponding arguments

\

« Learning semantic sets of
predicates with their
correspondi ng arguments




L ear ning predicate-argument structures

Pred: Repress

Repress

Repression

%\\‘Opd‘

N

------ Morphological derivation
----- - Semantic similarity
------ Syntactic derivation




L ear ning conceptual structures

Pred: Repress

Repress

Repression

Pred: Inhibit

inhibit
Inhibition

Semantic similarity
Syntactic derivation

Pred: Negative Interaction

Pred: Repress

Pred: Inhibit




M or e conceptual inter pretation

"The sigma factor controls the expressi on of gene dacB"

e At the syntactic level

Verb:
Subject : Sigma factor
DObj : expression of gene dacB

Noun :
Noun Modifier (of) : dacB gene

e At the predicate level

Action =
Agent = Protein
Object = Protein production

Action =
Agent = Gene

(= to control, verb)
(= sigma factor, subject)
(= expression of gene dacB, DODbj)

(= expression, Noun)
(= gene dacB, Noun Mod)




And theresulting inter pretation

Control —— Agent ———» Sjgma Factor : ?

v

Target
*I
Expresson———#» Agent — » Gene:
¢ dacB

Product——» Protein

Open problems

- Co-reference resol ution, negation
- Exploit the biological models (cascades, sequences, cycle, etc.)




Conclusion

| nformation Extraction requires tools and linguistic/conceptual knowledge for building more abstract
and conceptual representations of the text

» Robust tools are available: morphosyntactic taggers, syntactic parsers, term extractors...
» Linguistic and conceptual knowledge can be automatically lear ned:
Today: semantic classes, selectional restrictions

Tomorrow: term classes, predicate schemata ...

Building such resources call for multidisciplinary research and concern many
other tasks than IE: Information Retrieval, Trandlation, Lexicography, Writing

Assistance...

Natural Language
Processing




Subcategorization frames (SCF) lear ning

e From conceptual hierarchies, restrictions of sel ection and parsed corpus

—20
Adj (until)
AT

e Learning structural constr aints: optionality, mutual exclusion, etc.
=2 Syntactic desambiguation of the attachments

e Learning conceptual dependencies between complements (restrictions of
selection are overgeneral).

= Semantic desambiguation: &; efficiency in IR (O expansion of the queries)

» Required for learning predicate argument structures




The approach to learning SCF: ILP plusDL

 Hybrid method: combining Description Logic and Inductive Logic Programming
for a good expressivity and alow complexity.

"Whip" has at least one direct object. They are all either Cream, or Whites.

Schematal(X) :- Whip(X), = 1 DObj(X), 0 DObj.Cream(X).
Schemata2(X) :- Whip(X), = 1 DObj(X), 0 DObj.Whites(X).

If "Whip" has a complement starting with "until”, its head is of "stiff" type and
there is no complement starting with "to".

Schemata3(X) :- Whip(X), [2 1 until(X) ], O until stiff(X), <O to(X).
Schematad(X) :- Whip(X), [= 1 to(X)], 0 to.Chantilly(X), <O until(X).

e A complementary approach: Grammatical |nference.




Fragment

Question

Activation of gene 1.28 by Dfd Wich protein does activate gene

[.]

DNA Sequence

Gene

[activation] [<of>genel.28] [<by=> Dfd]

NprepN

Protein

NprepN

1.28?

DNA Sequence

Protein Gene

[Which protein] [does activate] [gene1.28]

Subject Dobj




Fragment Question

Activation of gene \Wich protein does
1.28 by Dfd [.] activate gene 1.28?
Activate

/ \ Activate
Agent Target / \
| | Agent Target

Dfd 1.28 | |
Protein 1.28

Pr ojection

Activate

/N

Agent

Protein /Dfd

Target

1.28/ 1.28



T he conceptual structuresrequired

Activate
Activation of gene 1.28 by Dfd [...] / \
Which protein does activate gene 1.287? Agent  Target

Protein /Dfd 1.28/ 1.28

= Additional conceptual knowledge is needed to inter pret the sentences.

i
P*geﬂ 7
p\\mﬂ DNA sequence
\\0‘9 oct proteln
gl

/ N\

o, 'f ene romoter
N("D enzym \ g Y
IS

O,
5 Gy @ hemoglobm a
e Dfd '
@E‘g \

bch 1.28




ltem to classify: Predicates or Modifiers

e A dual point of view of the examples

» Objects. predicate; Attributes: modifier

- <

>

» Objects: modifier; Attributes. predicate

-

>




[Dry] |
Dobj <f ood> required
[ (Adj nean) by <air> XOR wi t h <tambour>] optional
[ (Adj duration) during <duration> XOR for <duration>]

opti onnel




Medline experiment in a keyword based r epr esentation

e Total number of "biterms’ sentences. 313 classed by biologists.

104 /313 =33,3 % with interaction
e 209/ 313 = 66,7 %0 without Interaction

Recall rate: 74 %o
Precision rate: 51,7 %o

= Half of the sentences classed positively are negative.
= 1/ 3 of the interactions are recognized.

Recall is OK but precision is very poor.




Example of M edL ine abstract

O her

Li nks:

ul
AU
AU
Tl

LA
DA
DP
'S
TA
PG
SB
CY

Formats: [Citation Format]
[ 98 nedl i ne nei ghbor s] [ Journal of Bacteriol ogy]

98348468

QY

Hul ett FM

Rol e of PhoP approximately P in transcriptional regulation of genes
i nvol ved in cell wall anionic polyner biosynthesis in bacillus subtilis
[In Process Citation]

Eng

19980801

1998 Aug

0021-9193

J Bacteri ol

4007- 10

M

UNI TED STATES

15

180

HH3

AUTHOR




Example of M edL ine abstract

AB

AD

RO

- tagA, tagD, and tuaA operons are responsible for the synthesis of cell
wal | anionic polyner, teichoic acid, and teichuronic acid, respectively, in
Bacillus subtilis. Under phosphate starvation conditions, teichuronic acid is
synthesized while teichoic acid synthesis is inhibited. Expression of these
genes is controlled by PhoP-PhoR a two-conponent system It has been
proposed that PhoP approximately P plays a key role in the activation of tuaA
and the repression of tagA and tagD. In this study, we denonstrated the role
of PhoP approximately P in the switch process fromteichoic acid synthesis to
teichuronic acid synthesis, by using an in vitro transcription system The
results indicate that PhoP approximately P is sufficient to repress the
transcription of the tagA and tagD pronoters and also to activate the

transcription of the tuaA pronoter.

- Laboratory for Ml ecular Biology, University of Illinois at Chicago,
Chi cago, Illinois 60607, USA.
- O 099

PM D- 0009683503

SO

- J Bacteriol 1998 Aug; 180(15):4007-10




SUBJ(8@ 9@l ay)
SUBJPASS(1@t 4@ropose)
DOBJ(9@! ay 12@ ol e)
VMODOBI (9@l ay 21@f 24@ agD)
VMODOBI (9@l ay 16@f 20@ epr essi on)
VMODOBI (9@l ay 13@n 15@acti vati on)
ADJ(22@ agA 24@ agD)
ADJ(17@ uaA 20@ epr essi on)
It has been proposed that PhoP approximately 8@ plays a key role in the
activation of tuaA and the repression of tagA and 24@ agD .

[SC [NP It NP]/SUBJ :v has been proposed SC] [SC that [AP PhoP APF]
approximately [NP 8@ NP]/SUBJ :v plays SC] [NP a key role NP]/OBJ [PP in the
activation PP] [PP of tuaA and the repression PP] [PP of tagA and 24@ agD PP]
NN(1ll@key 12@ol e)

NNPREP( 20@ epr essi on 21@f 24@ agD)

NNPREP( 15@cti vation 16@f 20@ epressi on)

NNPREP(12@ ol e 13@n 15@cti vati on)

NUNSURE([N [NP a key role NP] [PP in the activation PP] [PP of tuaA and the
repression PP] [PP of tagA and tagD PP] N])

NUNSURE([N [NP P NP] N])


mailto:8@P
mailto:24@tagD
mailto:8@P
mailto:24@tagD

L ear ning examples

activation $ of (NomPrep-Non) $ P. $ 1 activate COD $ transcription
activation $ of (Nom Prep-Nom) $ repression $ 1 $ 5

activation $ of (Nom Prep-Non) $ pronoter $ 19 i v CcoD 1
activation $ of (NomPrep-Nom) $ sone $ 1 gg:ivg:: oD e'r O?;’Dt er $5
activation $ of (Nom Prep-Nom) $ expression $ 8 : P

activation $ of (Nom Prep-Non) $ SpoOA $ 1 activate $ COD $ b $ 1

expression $ 6
catabolism$ 1
sequence $ 1

activation $ of (NomPrep-Nom) $ tuaA $ 1 activate

: activate
repression $ of (NomPrep-Nom) $ tagA $ 17 ° . '~ °

PP hPHRPRH PP PPPR R 2]
AP BhPPHPRH PP PHPR R ©»

activation $ of (NomPrep-Nom) $ PA3 $ 1 :

activation $ of (Nom Prep-Nom) $ phoA $ 1 activate phosphorel ay $
activation $ of (NomPrep-Non) $ lichenysin $ 1 2

activation $ of (Nom Prep-Nom) $ transcription $ 9 activate COD $ operons $ 1
activation $ of (Nom Prep-Nom) $ phoB $ 1 activate COD function $ 1
activation $ of (Nom Prep-Nom) $ pro-signak $ 1 acti vat e COD $ 29 $ 1
activation $ of (NomPrep-Nom) $ RocR $ 1 -

activation $ of (NomPrep-Nom) $ sigm $ 14 gg::x:tg % g§§e$$13
activation $ of (NomPrep-Nom) $ PrfA $ 1 :

activation $ of (NomPrep-Nom) $ set $ 1 act!vate oD mp $ 1
activation $ of (Nom Prep-Nom) $ regulator $ 1 activate COD $ 86 $1
activation $ of (NomPrep-Nom) $ narGHII $ 1

activation $ of (NomPrep-Nom) $ enzyne $ 1

activation $ of (NomPrep-Nom) $ FNR $ 1

activation $ of (NomPrep-Nom) $ gltC $ 1

activation $ of (Nom Prep-Non) $ autoregulation $ 1

activation $ of (NomPrep-Nom) $ gene $ 4




